

CCC Annual Report

UIUC, August 19, 2015

Argon Bubble Behavior in EMBr Field

Kai Jin

Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign

tinuous

Casting

Pnsortium

Introduction

- Argon bubbles are commonly injected during Continuous Casting (CC) process, and understanding the motion of such argon bubbles is important (e.g. inclusion removal by bubble flotation^[1])
- Transverse magnetic field changes bubble dynamics
- This work studies motion of a single argon gas bubble rising in quiescent liquid steel with an external magnetic field (EMBr)
- Volume-of-Fluid (VOF) method with reduced spurious velocities was implemented into CUFLOW, validated and used
- Results from this study will be used to improve the Lagrangian nozzle-mold model by modifying the drag force in particle transport equations

Kai Jin

2

Dimensionless Numbers

- Bubble Reynolds number
- Terminal Reynolds number
- Eötvös number
- Bond number
- Morton number (material property)

d – bubble diameter; ρ – density;

- Laplace number
- Hartmann number
- Stuart number

University of Illinois at Urbana-Champaign

 $Re_{b} = \rho_{l}\sqrt{gd} d\mu_{l}^{-1}$ $Re_{\tau} = \rho_{l}u_{\tau}d\mu_{l}^{-1}$ $Eo = (\rho_{l} - \rho_{g})gd^{2}\gamma^{-1}$ $Bo = \rho_{l}gd^{2}\gamma^{-1}$ $Mo = g\mu_{l}^{4}(\rho_{l} - \rho_{g})\rho_{l}^{-2}\gamma^{-3}$ $La = \mu_{l}^{-2}\sigma\rho L$ $Ha = Bd\sqrt{(\sigma/\mu)}$ $N = Ha^{2}Re_{b}^{-1}$

 μ – viscosity;

Kai Jin

3

g – gravity acceleration; γ – bubble-liquid interfacial tension;

Metals Processing Simulation Lab

B – magnetic field strength; σ – fluid electrical conductivity.

subscripts l and g denote liquid and gas, respectively

Governing Equations

- Continuity $\nabla \cdot (\rho \mathbf{u}) = 0$
- Momentum $\rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nabla \cdot \left[\mu (\nabla \mathbf{u} + \nabla \mathbf{u}^T) \right] + \mathbf{F}_L + \mathbf{F}_S + \rho \mathbf{g}$
- Volume fraction $\frac{\partial \alpha}{\partial t} + \mathbf{u} \cdot \nabla \alpha = 0$

u is mixture velocity, *t* is time, ρ is mixture density, μ is mixture dynamic viscosity, *p* is total pressure and *g* is gravity, α volume fraction of steel. Source terms: *F*_L - Lorentz force and *F*_S - surface tension force

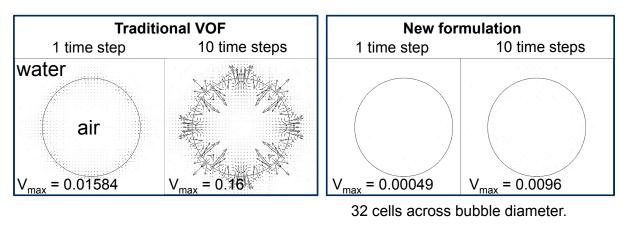
- MHD equations
- $\mathbf{J} = \boldsymbol{\sigma} (-\nabla \boldsymbol{\Phi} + \mathbf{u} \times \mathbf{B}) \qquad \nabla \cdot \mathbf{J} = 0$ $\nabla \cdot (\boldsymbol{\sigma} \nabla \boldsymbol{\Phi}) = \nabla \cdot [\boldsymbol{\sigma} (\mathbf{u} \times \mathbf{B})] \qquad \mathbf{F}_{L} = \mathbf{J} \times \mathbf{B}$
- Surface tension force

$$\mathbf{F}_{S} = \int_{\Gamma} \gamma \kappa \mathbf{n} \, \delta(\mathbf{x} - \mathbf{x}_{f}) \, \mathrm{d}\mathbf{s}$$

Solution Method

- Use in-house multi-GPU code, CUFLOW to solve equations
- Integrate three-dimensional unsteady incompressible Navier-Stokes equations on multiple Cartesian grids
- Solve continuity and momentum equations using fractional step method
- Three Poisson equations (pressure-Poisson equation, electrical-Poisson equation and surface-tension related Poisson equation) are solved efficiently on a GPU with a Vcycle multigrid method, and red-black SOR with overrelaxation parameter of 1.6

University of Illinois at Urbana-Champaign


Spurious Velocity Reduction in VOF (P. Kumar, UIUC, 2015)

Metals Processing Simulation Lab

Kai Jin

5

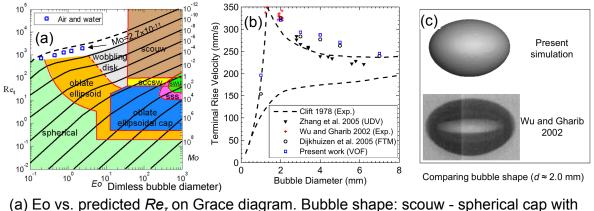
- A Sharp Surface Force (SSF) method for modeling of the surface tension force was adapted into CUFLOW when using VOF ^[3,4]
- Demonstrate method on test problem: static air bubble in water with no gravity. Results: spurious velocities arising with traditional VOF method in low-Morton number systems are mainly avoided.

Validation – Air Bubble Rise in Water

- Both air-water and argon-steel systems have similar numerical challenge (large density ratio and low Morton number), but many measurements are available for comparison in air-water system.
- Six validation simulations were conducted for air bubbles rising in water.
- Release single bubble (1mm ≤ d ≤ 7mm), from bottom of tall, square water tank (4d × 4d ×10d in rising direction).

	Air	Water	Argon	Steel
<i>T</i> (K)	300	1	177	'3
γ (N/m)	0.07	12	1.2	2
ρ (kg/m3)	1.17	1000	0.56	7000
μ (kg/(m·s))	1.86 × 10⁻⁵	0.001	7.42 × 10⁻⁵	0.0063
σ (1/(Ω·s))	1.00 × 10 ^{−15}	0.001	1.00 × 10 ⁻¹⁵	714000

TABLE I: Properties of air and water, argon and steel


IABL	TABLE II: Dimensionless numbers of air-water and Ar-steel ($d = 3 \text{ mm}$)									
	Eo	Мо	Re _b	ρ_{l}/ρ_{a}	μ/μ_a	σ_{l}/σ_{a}				
air-water	1.24	2.7 × 10 ⁻¹¹	514.4	8.547 × 10²	53.8	1.0 × 1012				
argon-steel	0.51	1.3 × 10 ⁻¹²	571.5	1.250 × 10 ⁴	84.3	7.4 × 10 ²⁰				

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab

Validation Results – Predicted

Kai Jin

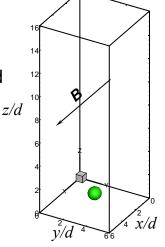
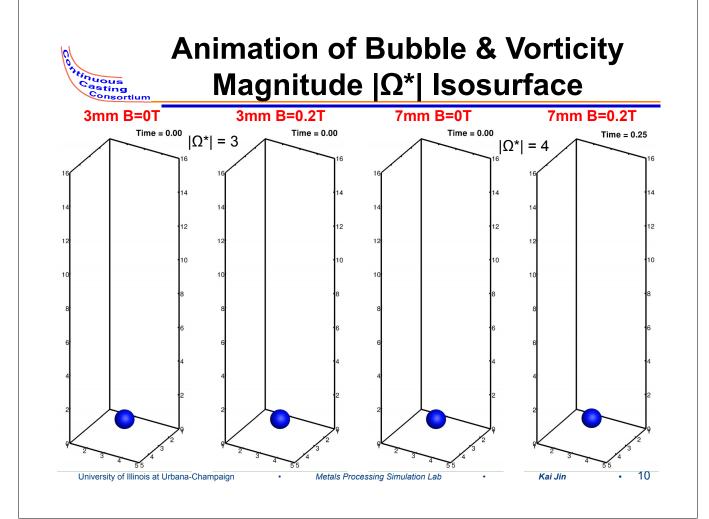
- · Compare with published experimental and computational results
- More details can be found elsewhere ^[4]

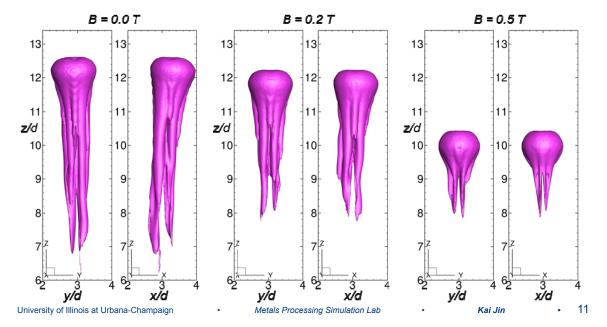
- (a) Eo vs. predicted Re_τ on Grace diagram. Bubble shape: scouw spherical cap with open unsteady wake; sccsw - spherical cap with closed steady wake; swu - with wavy unsteady skirt; sss – with smooth steady skirt ^[5, 6]
- (b) Comparison of predicted terminal velocities of bubbles of different size
- (c) Predicted shape of a 2 mm bubble after rising ~6.7 mm

Consortiun

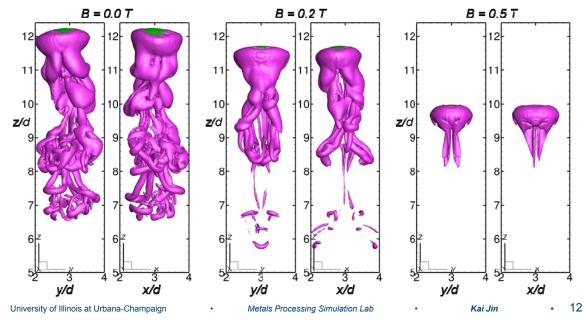
List of Simulations

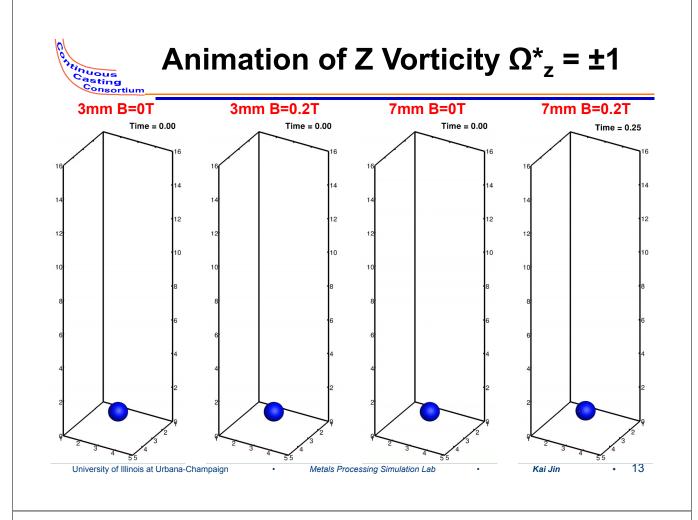
- Total 6 simulations solved using BlueWaters super computer
 - 2 different bubble diameters: 3 and 7 mm
 - 3 different magnetic field strengths: 0, 0.2 and 0.5 Tesla
- Magnetic field **B** along x direction
- All walls no slip and no penetration
- Walls are eclectically insulated
- Grid independence study^[2] shows 32 cells cross bubble is enough, ~19 millions cells in domain


TABLE III: Simulations of Ar bubble rising in liquid steel ($Mo = 1.3 \times 10^{-12}$, 1773 K)

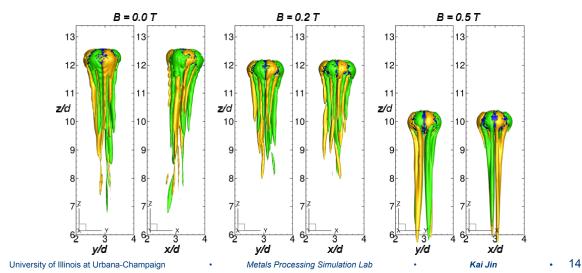
<i>d</i> (mm)	Eo	Re_b	No.	<i>B</i> (T)	Ha	Ν	No.	<i>B</i> (T)	Ha	Ν	No.	<i>B</i> (T)	Ha	Ν
3	0.51	572	1	0.0	0.00	0.00	2	0.2	6.39	0.07	3	0.5	15.97	0.45
7	2.80	2037	4	0.0	0.00	0.00	5	0.2	14.90	0.11	6	0.5	37.26	0.68
University	of Illinois	at Urbana-	-Champai	gn	•	Metals	Process	ing Simula	tion Lab	•		Kai Jin		•


Wake behind the 3mm Bubble (Isosurface of Vorticity Magnitude)


 Front and side views of the isosurface of vorticity magnitude |Ω*|=3 at t=0.1s for different B, 3mm bubble

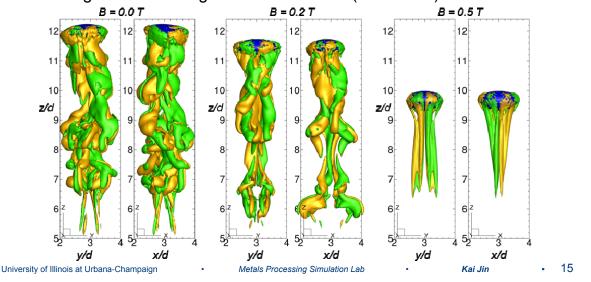
Wake behind the 7mm Bubble (Isosurface of Vorticity Magnitude)

 Front and side views of the isosurface of vorticity magnitude |Ω*|=4 at t=0.24s for different B, 7mm bubble

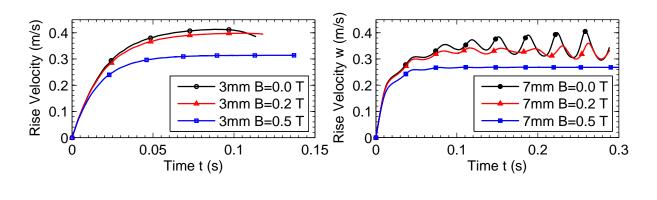


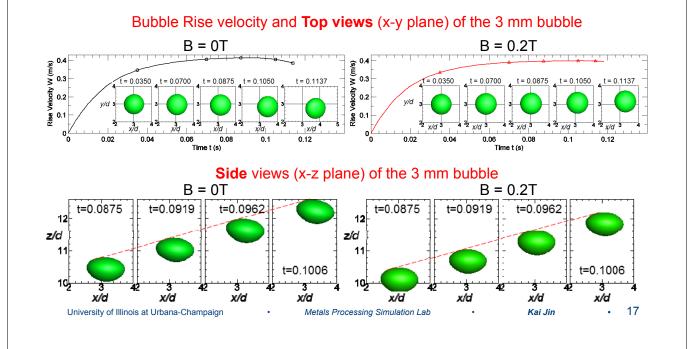
Wake behind the 3mm Bubble (Z Vorticity)

• Front and side views, isosurfaces of $\Omega_z^* = \pm 1$ at t=0.1s, 3mm bubble


inuous Casting Consortium

- Ω_z^* alternates in sign \rightarrow fluid in z direction has alternating rotation pairs
- After applying the magnetic field, the bias of z vorticity disappears and the bubble is seen to rise rectilinearly

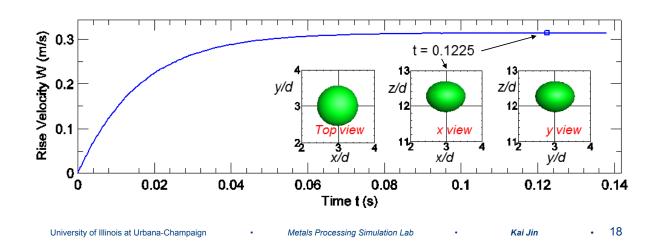

- Front and side views, isosurfaces of $\Omega_z^* = \pm 1$ at t=0.24s for the 7mm bubble
- Alternating pattern of Ω_z^* is seen
- With a magnetic field of 0.2 T, it is seen more clearly that the isosurfaces are elongated in the magnetic field direction (x direction).


Bubble Rise Velocity

- d = 3mm, rise velocity curves are smooth and non-oscillatory
- d = 7mm, B = 0 and 0.2 T, rise velocity curve is oscillatory after the initial rise; B = 0.5 T, a steady rise velocity curve is seen
- With EMBr, bubble rises smoother and slower

Shape of the 3mm Bubble with B = 0 T and B = 0.2 T

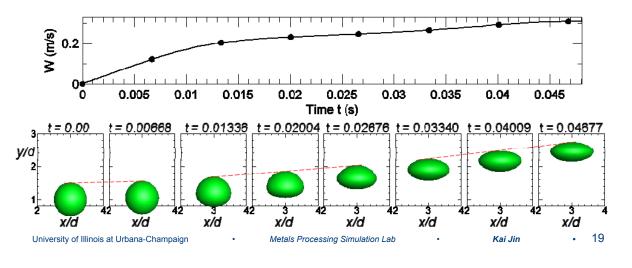
- d = 3mm, top and side views of the bubble
- With no EBMr, rise velocity decreases after t>0.1s, due to bubble transverse motion



Shape of the 3mm Bubble with B = 0.5 T

- d = 3mm, B = 0.5T: top, side and front view of bubble at t = 0.1225s
- No significant rotation of the bubble is observed

huous asting

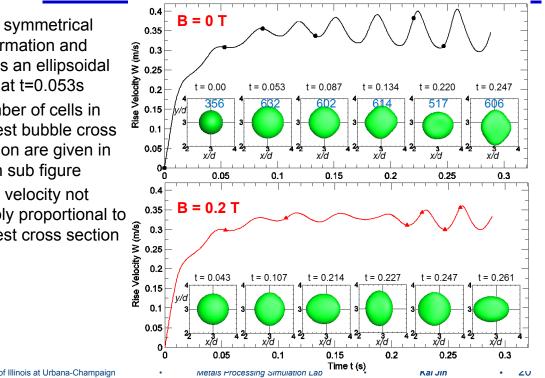

• Ellipsoidal bubble, slightly elongated in magnetic field direction

Shape of the 7mm Bubble At initial stage t<0.05s

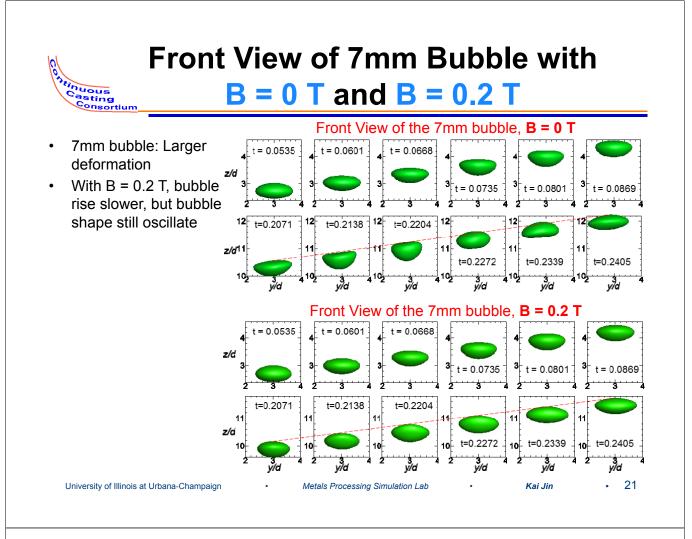
- In initial stage the bubble rose with the same velocity for all B
- large deformation between t=0 to 0.03s:
 - changes from a sphere to a mushroom-head-like shape at t=0.02004s
 - then deforms into a squeezed (in z direction) ellipsoidal at t=0.03340s
- Viscous and surface tension effects dominate early deformation stage

Top View of 7mm Bubble with

0

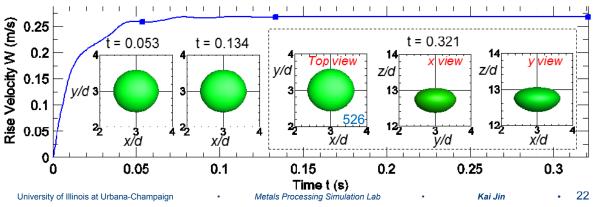

T and **B** = 0.2 **T**

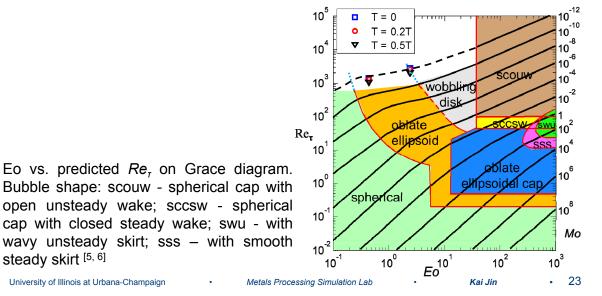
First symmetrical deformation and forms an ellipsoidal disk at t=0.053s


nuous

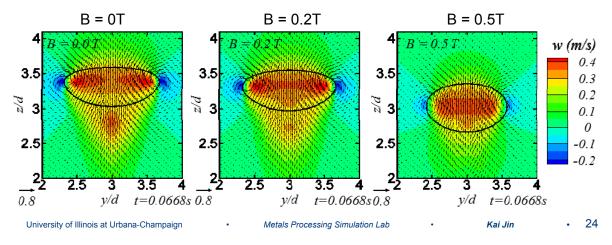
asting nsortium

- Number of cells in largest bubble cross section are given in each sub figure
- Rise velocity not simply proportional to largest cross section area

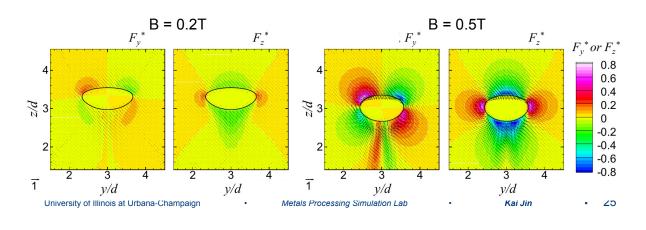

University of Illinois at Urbana-Champaign

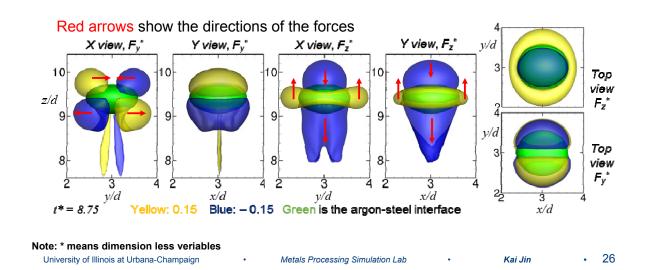

Top, Front and Side View of 7mm Bubble at B = 0.5 T

- More stable rise of the bubble
- No time dependent variation of bubble shape is seen, largest cross section has 526 cells
- Bubble is slightly elongated in the direction of magnetic field (1.24d along *x* and 1.16d along *y*)
- Bubble oscillations are suppressed and the steady rise velocity is reduced to 75% of that with B = 0

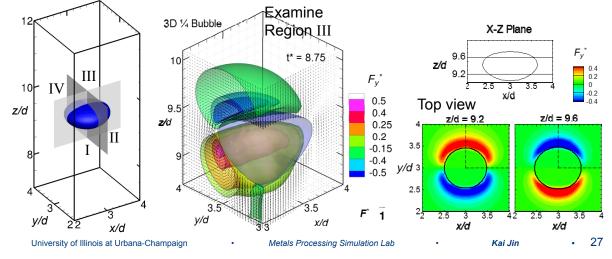

Predicted Bubble Reynolds Number and Argon Bubble Shape on Grace Diagram

- Increasing EMBr leads to smaller bubble Reynolds number Re_{τ}
- Increasing EMBr, 7mm bubble becomes less wobbling and bubble shape is more close to oblate ellipsoid


- w velocity contour close to bubble at t=0.0668s for different B
- Recirculation pattern at the boundary of the bubble
- Comparing B = 0 and B = 0.2T, the maximum vertical velocity w at the bottom of the bubble is reduced from 0.42m/s to 0.34m/s
- With B = 0.5T, bubble becomes thicker and less squeezed in z


Lorentz Force in Y-Z plane

- Contour of Lorentz Force (dimensionless), d=7 mm, t=0.0668s, in y-z plane
- Top half of the bubble: force points inside of the bubble, tries to squeeze the bubble along y and z directions.
- Bottom half of the bubble: the y component of the F_L is positive on right side but negative on left side \rightarrow pull liquid away from bubble
- z component of the F_L tends to accelerate the flow at the side of the bubble (as a resistance force to diminish the recirculation and decelerate the downward motion of the liquid near the sides of the bubble).


- d = 7 mm, B = 0.5, t=0.23s
- Isosurface of constant y and z components of dimensionless F_L

Lorentz Force and Bubble Shape

- 1/4 of the bubble and the isosurfaces of constant F_y^* , Lorentz force vectors in the quarter planes, t= 0.2339s, d=7mm, B=0.5T
- Distribution of F_v^* in two x-y planes
 - z/d = 9.2 cuts bottom half of the bubble, Lorentz force shows pulling along y
 - z/d = 9.6 cuts top half of the bubble, shows compression of the liquid along y

Conclusions

- Small bubbles remain almost spherical.
- Without a magnetic field, oscillating rise velocity of larger bubbles is closely related to the variation of bubble shape;
- EMBr makes bubble rise smoother, slower, and straighter;
- Large (7mm) bubbles experience alternating elongation with weak magnetic field (B = 0 and B = 0.2 T);
- All bubbles elongate along the magnetic field direction with strong magnetic field (B=0.5T);
- Wake structures behind bubble are lessened by magnetic field.

Future Work

Implement the results of this single-bubble VOF model study into the multiphase Lagrangian particle model used to study continuous casting with EMBr.

- Test a single bubble rise under EMBr using two-way coupled Lagrangian method, and compare relative rising velocity (v_{fluid} – v_{bubble}) with VOF model results
- Determine additional forces or modifications to the drag laws to add into the particle motion equations of the Lagrangian model

University of Illinois at Urbana-Champaign

Acknowledgment

Metals Processing Simulation Lab

- Continuous Casting Consortium Members (ABB, AK Steel, ArcelorMittal, Baosteel, JFE Steel Corp., Magnesita Refractories, Nippon Steel and Sumitomo Metal Corp., Nucor Steel, Postech/ Posco, SSAB, ANSYS/ Fluent)
- National Science Foundation Grant CMMI-11-30882
- Blue Waters / National Center for Supercomputing Applications (NCSA) at UIUC
- NVIDIA for providing the GPU cards through the NVIDIA Professor Partnership program

30

Kai Jin

29

Kai Jin

- 1. L. Zhang, J. Aoki, and B. G. Thomas, "Inclusion removal by bubble flotation in a continuous casting mold," Metallurgical and Materials transactions B **37**, 361–379 (2006).
- 2. K. Jin, P. Kumar, S. P. Vanka and B. G. Thomas "Rise of a Argon Bubble in Liquid Steel in the Presence of a Transverse Magnetic Field," manuscript submitted to *Physics of Fluids*
- 3. Z. Wang and A. Y. Tong, "Deformation and oscillations of a single gas bubble rising in a narrow vertical tube," in *ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels* (American Society of Mechanical Engineers, 2006) pp. 1195–1202.
- 4. Z. Wang and A. Y. Tong, "Deformation and oscillations of a single gas bubble rising in a narrow vertical tube," International Journal of Thermal Sciences **47**, 221–228 (2008).
- 5. J. Grace, "Shapes and velocities of bubbles rising in infinite liquids," Trans. Inst. Chem. Eng. **51**, 116–120 (1973).
- 6. D. Bhaga and M. Weber, "Bubbles in viscous liquids: shapes, wakes and velocities," Journal of Fluid Mechanics **105**, 61–85 (1981).

University of Illinois at Urbana-Champaign	•	Metals Processing Simulation Lab	•	Kai Jin	• 31	