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Introduction

• Argon bubbles are commonly injected during Continuous 
Casting (CC) process,  and understanding the motion of such 
argon bubbles is important (e.g. inclusion removal by bubble 
flotation[1])

• Transverse magnetic field changes bubble dynamics

• This work studies motion of a single argon gas bubble rising in 
quiescent liquid steel with an external magnetic field (EMBr)

• Volume-of-Fluid (VOF) method with reduced spurious 
velocities was implemented into CUFLOW, validated and used

• Results from this study will be used to improve the Lagrangian
nozzle-mold model by modifying the drag force in particle 
transport equations
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Dimensionless Numbers

• Bubble Reynolds number

• Terminal Reynolds number

• Eӧtvӧs number

• Bond number

• Morton number (material property)

• Laplace number

• Hartmann number

• Stuart number

d – bubble diameter; ρ – density; μ – viscosity;

g – gravity acceleration; γ – bubble-liquid interfacial tension;

B – magnetic field strength; σ – fluid electrical conductivity.

subscripts l and g denote liquid and gas, respectively
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Governing Equations

• Continuity

• Momentum

• Volume fraction

u is mixture velocity, t is time, ρ is mixture density, μ is mixture dynamic
viscosity, p is total pressure and g is gravity, α volume fraction of steel.
Source terms: FL - Lorentz force and FS - surface tension force

• MHD equations

• Surface tension force

κ is the mean interface curvature, Γ represents the interface, n is the normal 
vector of the interface, δ is the Dirac delta function. Solve the dimensionless 
equations, with scale: μl, ρl, (gd)1/2 as velocity scale, (g/d)1/2 as time scale
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Solution Method

• Use in-house multi-GPU code, CUFLOW to solve equations

• Integrate three-dimensional unsteady incompressible 
Navier-Stokes equations on multiple Cartesian grids

• Solve continuity and momentum equations using fractional 
step method

• Three Poisson equations (pressure-Poisson equation, 
electrical-Poisson equation and surface-tension related 
Poisson equation) are solved efficiently on a GPU with a V-
cycle multigrid method, and red-black SOR with over-
relaxation parameter of 1.6
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Spurious Velocity Reduction in VOF
(P. Kumar, UIUC, 2015)

• A Sharp Surface Force (SSF) method for modeling of the surface 
tension force was adapted into CUFLOW when using VOF [3,4]

• Demonstrate method on test problem: static air bubble in water 
with no gravity. Results: spurious velocities arising with traditional 
VOF method in low-Morton number systems are mainly avoided.

air

water

Traditional VOF New formulation
1 time step 10 time steps

Vmax = 0.01584 Vmax = 0.00049Vmax = 0.16 Vmax = 0.0096

1 time step 10 time steps

32 cells across bubble diameter. 
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Validation – Air Bubble Rise in Water

• Both air-water and argon-steel systems have similar numerical challenge 
(large density ratio and low Morton number), but many measurements are 
available for comparison in air-water system.

• Six validation simulations were conducted for air bubbles rising in water.

• Release single bubble (1mm ≤ d ≤ 7mm), from bottom of tall, square water 
tank (4d × 4d ×10d in rising direction).

Air Water Argon Steel
T (K) 300 1773
γ (N/m) 0.0712 1.2
ρ (kg/m3) 1.17 1000 0.56 7000
µ (kg/(m·s)) 1.86 ×10−5 0.001 7.42 ×10-5 0.0063
σ (1/(Ω·s)) 1.00 ×10−15 0.001 1.00 ×10-15 714000

TABLE I: Properties of air and water, argon and steel

Eo Mo Reb ρl/ρg µl/µg σl/σg

air-water 1.24 2.7 ×10−11 514.4 8.547 ×102 53.8 1.0 ×1012

argon-steel 0.51 1.3 ×10−12 571.5 1.250 ×104 84.3 7.4 ×1020

TABLE II: Dimensionless numbers of air-water and Ar-steel (d = 3 mm)
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Validation Results – Predicted 
Terminal Velocity and Bubble Shape

• Compare with published experimental and computational results

• More details can be found elsewhere [4]

(a) Eo vs. predicted Reτ on Grace diagram. Bubble shape: scouw - spherical cap with 
open unsteady wake; sccsw - spherical cap with closed steady wake; swu - with 
wavy unsteady skirt; sss – with smooth steady skirt [5, 6]

(b) Comparison of predicted terminal velocities of bubbles of different size
(c) Predicted shape of a 2 mm bubble after rising ~6.7 mm

(a)
(c)(b)

Dimless bubble diameter)



University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Kai Jin • 9

List of Simulations

• Total 6 simulations solved using BlueWaters
super computer

– 2 different bubble diameters: 3 and 7 mm

– 3 different magnetic field strengths: 0, 0.2 and 
0.5 Tesla

• Magnetic field B along x direction

• All walls no slip and no penetration

• Walls are eclectically insulated

• Grid independence study[2] shows 32 cells cross 
bubble is enough, ~19 millions cells in domain

d(mm) Eo Reb No. B(T) Ha N No. B(T) Ha N No. B(T) Ha N

3 0.51 572 1 0.0 0.00 0.00 2 0.2 6.39 0.07 3 0.5 15.97 0.45

7 2.80 2037 4 0.0 0.00 0.00 5 0.2 14.90 0.11 6 0.5 37.26 0.68

TABLE III: Simulations of Ar bubble rising in liquid steel (Mo = 1.3 × 10−12, 1773 K)
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Animation of Bubble & Vorticity 
Magnitude |Ω*| Isosurface

• 1

3mm B=0T 3mm B=0.2T 7mm B=0T 7mm B=0.2T

|Ω*| = 3 |Ω*| = 4
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Wake behind the 3mm Bubble
(Isosurface of Vorticity Magnitude )

• Front and side views of the isosurface of vorticity magnitude 
|Ω*|=3 at t=0.1s for different B, 3mm bubble
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Wake behind the 7mm Bubble
(Isosurface of Vorticity Magnitude )

• Front and side views of the isosurface of vorticity magnitude 
|Ω*|=4 at t=0.24s for different B, 7mm bubble
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Animation of Z Vorticity Ω*z = ±1 

• 1

3mm B=0T 3mm B=0.2T 7mm B=0T 7mm B=0.2T
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Wake behind the 3mm Bubble
(Z Vorticity)

• Front and side views, isosurfaces of Ω*z = ±1 at t=0.1s, 3mm bubble

• Ω*z alternates in sign  fluid in z direction has alternating rotation pairs

• After applying the magnetic field, the bias of z vorticity disappears and 
the bubble is seen to rise rectilinearly
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Wake behind the 7mm Bubble
(Z Vorticity)

• Front and side views, isosurfaces of Ω*z = ±1 at t=0.24s for the 7mm 
bubble

• Alternating pattern of Ω*z is seen
• With a magnetic field of 0.2 T, it is seen more clearly that the isosurfaces

are elongated in the magnetic field direction (x direction).
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Bubble Rise Velocity

• d = 3mm, rise velocity curves are smooth and non-oscillatory

• d = 7mm, B = 0 and 0.2 T, rise velocity curve is oscillatory after 
the initial rise; B = 0.5 T, a steady rise velocity curve is seen

• With EMBr, bubble rises smoother and slower
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Shape of the 3mm Bubble
with B = 0 T and B = 0.2 T

• d = 3mm, top and side views of the bubble

• With no EBMr, rise velocity decreases after t>0.1s, due to bubble transverse motion

B = 0T B = 0.2T

Side views (x-z plane) of the 3 mm bubble

Bubble Rise velocity and Top views (x-y plane) of the 3 mm bubble

B = 0T B = 0.2T
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Shape of the 3mm Bubble
with B = 0.5 T

• d = 3mm, B = 0.5T: top, side and front view of bubble at t = 0.1225s

• No significant rotation of the bubble is observed

• Ellipsoidal bubble, slightly elongated in magnetic field direction
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Shape of the 7mm Bubble
At initial stage t<0.05s

• In initial stage the bubble rose with the same velocity for all B

• large deformation between t=0 to 0.03s:

– changes from a sphere to a mushroom-head-like shape at t=0.02004s

– then deforms into a squeezed (in z direction) ellipsoidal at t=0.03340s

• Viscous and surface tension effects dominate early deformation stage
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Top View of 7mm Bubble with
B = 0 T and B = 0.2 T

• First symmetrical 
deformation and 
forms an ellipsoidal 
disk at t=0.053s

• Number of cells in 
largest bubble cross 
section are given in 
each sub figure 

• Rise velocity not 
simply proportional to 
largest cross section 
area

606517614602632356

B = 0 T

B = 0.2 T
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Front View of 7mm Bubble with 
B = 0 T and B = 0.2 T

• 7mm bubble: Larger 
deformation

• With B = 0.2 T, bubble 
rise slower, but bubble 
shape still oscillate

Front View of the 7mm bubble, B = 0 T

Front View of the 7mm bubble, B = 0.2 T
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Top, Front and Side View of 7mm 
Bubble at B = 0.5 T

• More stable rise of the bubble

• No time dependent variation of bubble shape is seen, largest 
cross section has 526 cells

• Bubble is slightly elongated in the direction of magnetic field 
(1.24d along x and 1.16d along y)

• Bubble oscillations are suppressed and the steady rise velocity is 
reduced to 75% of that with B = 0

526
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Predicted Bubble Reynolds Number and 
Argon Bubble Shape on Grace Diagram

• Increasing EMBr leads to smaller bubble Reynolds number Reτ
• Increasing EMBr, 7mm bubble becomes less wobbling and 

bubble shape is more close to oblate ellipsoid

Eo vs. predicted Reτ on Grace diagram.
Bubble shape: scouw - spherical cap with
open unsteady wake; sccsw - spherical
cap with closed steady wake; swu - with
wavy unsteady skirt; sss – with smooth
steady skirt [5, 6]
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Velocity close to 7mm Bubble

• w velocity contour close to bubble at t=0.0668s for different B

• Recirculation pattern at the boundary of the bubble

• Comparing B = 0 and B = 0.2T, the maximum vertical velocity w
at the bottom of the bubble is reduced from 0.42m/s to 0.34m/s

• With B = 0.5T, bubble becomes thicker and less squeezed in z

B = 0T B = 0.2T B = 0.5T
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Lorentz Force in Y-Z plane

• Contour of Lorentz Force (dimensionless), d=7 mm, t=0.0668s, in y-z plane

• Top half of the bubble: force points inside of the bubble, tries to squeeze the 
bubble along y and z directions. 

• Bottom half of the bubble: the y component of the FL is positive on right side but 
negative on left side  pull liquid away from bubble

• z component of the FL tends to accelerate the flow at the side of the bubble (as 
a resistance force to diminish the recirculation and decelerate the downward 
motion of the liquid near the sides of the bubble).

B = 0.2T B = 0.5T
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Isosurfaces of 
Constant Lorentz Force

• d = 7 mm, B = 0.5, t=0.23s

• Isosurface of constant y and z components of dimensionless FL

Red arrows show the directions of the forces 

Note: * means dimension less veriables
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Lorentz Force and Bubble Shape

• 1/4 of the bubble and the isosurfaces of constant Fy*, Lorentz 
force vectors in the quarter planes, t= 0.2339s, d=7mm, B=0.5T

• Distribution of Fy* in two x-y planes 
– z/d = 9.2 cuts bottom half of the bubble, Lorentz force shows pulling along y

– z/d = 9.6 cuts top half of the bubble, shows compression of the liquid along y

I
II

III
IV

Examine 
Region III

x/d
y/d

z/d Top view
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Conclusions

• Small bubbles remain almost spherical.

• Without a magnetic field, oscillating rise velocity of larger 
bubbles is closely related to the variation of bubble shape;

• EMBr makes bubble rise smoother, slower, and straighter;

• Large (7mm) bubbles experience alternating elongation with 
weak magnetic field (B = 0 and B = 0.2 T); 

• All bubbles elongate along the magnetic field direction with 
strong magnetic field (B=0.5T);

• Wake structures behind bubble are lessened by magnetic 
field.
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Future Work

Implement the results of this single-bubble VOF model study
into the multiphase Lagrangian particle model used to study
continuous casting with EMBr.

• Test a single bubble rise under EMBr using two-way coupled
Lagrangian method, and compare relative rising velocity
(vfluid – vbubble) with VOF model results

• Determine additional forces or modifications to the drag
laws to add into the particle motion equations of the
Lagrangian model
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